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Jauch-Piron States on Concrete Quantum Logics 

V. Miiller 1 

Received July 21, 1992 

We exhibit an example of a concrete (=set-representable) quantum logic which 
is not a Boolean algebra such that every state on it is Jauch-Piron. This gives a 
negative answer to a problem raised by Navara and PtAk. Further we show that 
such an example does not exist in the class of complete (i.e., closed under arbitrary 
disjoint unions) concrete logics. 

A concrete logic is a pair  (X,  s162 where X is a set and  ~ c e x p X  
satisfies: 

1. ~ .  
2. X -  A e ~ whenever  A 6 ~('. 
3. A u B 6 ~  whenever  A, B~5r  A nB=~Z~.  

N o t e  tha t  also A - B = X - ( B u  ( X - A ) ) ~  for  every A, B ~ 5  ~  
A state on a concrete logic (X,  5r  is a m a p p i n g  s: ~ ~ [0, 1] such that :  

1. s(A u B) = s ( A )  +s(B) whenever  A, B~s A n B =  ~Zf. 
2. s (X)  = 1. 

A state s is said to be carried by a point x e X  if  s (A)= 1 whenever  xEA,  
AeSr  and s ( A ) = 0  if xq~A. A state s is called Jauch-Piron if, for  every 
A, B e ~  with s ( A ) = s ( B ) =  1, there exists a C e ~  such that  C c A  n B  and 
s ( C )  = 1. 

The  J a u c h - P i r o n  p roper ty  o f  states has been considered as physically 
natura l  in the axiomat iza t ion  of  q u a n t u m  systems (Jauch,  1968; Jauch and 
Piron,  1969; Piron, 1976) and fur ther  studied by a number  of  authors  (see, 
e.g., A m m a n ,  1987; Bugajska  and Bugajski,  1972; Bunce et al., 1985; PtAk 
and Pulmannovfi ,  1991). N a v a r a  and  PtAk (1989) (see also M/iller et al., 1993) 
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raised the question of  whether a concrete logic such that every state on it is 
Jauch-Piron is necessarily a Boolean algebra. We give a negative answer to 
this question. 

Theorem 1. There exists a concrete logic (X, ~ 7  which is not a Boolean 
algebra such that every state on (X, s is Jauch-Piron. 

Proof Let Kl,  K2 be two disjoint sets of  cardinality co~. Let K=KI u K2 
and X.  = K" (n = 1, 2 , . . .  ). Further, let 

Q. = {(kl . . . . .  k . } eX . ,  k;eK2 for an even number of  indices i} 

and Q ' = X . - Q . .  For  l<_m<n denote by 7c .... : X . ~ X , .  the projection 
onto the first m coordinates, i.e., J v . , , . ( ( k l , . . . ,  k . ) )  = (k~ . . . . .  k, .)  for all 
(kl  . . . . .  k . )  eX. .  

We define by induction on n a system ~ n c e x p X .  (n=  1, 2 , . . .  ). For  
n = l  and M c X ~ = K  let MeSr if and only if either M is finite and 
[M c~ K,[ = IM n Kz[ or X, - M is finite and [(X1 - M )  c~ K1t = [(X1 - M)  c~ K21. 

Suppose LP. c exp X. is already defined. We define s ~ as the family 
of  all sets M c X . + ,  which can be expressed as a disjoint union of the form 

M = R x K u  ~J ( { p j } x G / ) u F  (1) 
j=l  

where R e 5~ pjeX.  ( j  = 1 . . . .  , m), m < oo, Gj c K, K -  Gj is a finite set and 
]KI - Gj[ = 11(2- Gjl + 1 for j =  1 . . . . .  m, and FcX.+  l is a finite set satisfying 
[FnQ.+j]=[Fc~Q'+I[. 

Notice that if M e ~ . + ~  is infinite (i.e., if either R # ~  or m e 0 ) ,  then 
Mc~ Q.+~ and Mc~ Q '+ l  are infinite as well. 

I. I f  M, M ' e ~ .  and M c ~ M ' = ~ ,  then MwM'es This is clear for 
n = t. For  n > 2  it follows easily from (1) by induction on n. 

II. I f  M e  ~.r then X . -  M e  ~ . ,  i.e., (X. ,  ~LPn) is a concrete logic. 

Proof By induction on n" Let Meog~~ be of  the form (1). Denote 

Z = ~ )  ({pj}xGj)  wF, i.e., M = R •  
j = l  

Clearly n.+~,.(Z) is a finite set and J v . + ~ , . ( Z ) n R = ~ .  We prove that 
X . + 1 - M e 5 r  in several steps: 

(a) There exists a finite set R ' eL~ .  such that R c~ R ' =  ~ and R ' D  
n.+~,.(Z). This is clear if A n - R  is finite: we can take R ' = X n - R e ~ .  by 
the induction assumption. I f  Xn - R is infinite, then also (X. - R) n Q. and 
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( X , -  R) n Q" are infinite and it is easy to see that  there exists a finite set 
R '  c X,  - R such that  IR'  n Q,] = IR'  n Q ' I  and R '  ~ ~r, + 1,,(Z). Then R '  ~ ~ ,  
by (1). 

(b) Let  R '  be the set const ructed in (a). Then 

X ,+ ,  - M =  [(An - (R u R ' ) )  x K]  u ( R '  x K -  Z )  

where [ X , -  (R u R ' ) ]  x Ke~,+j and the above  union is disjoint. Thus  it 
suffices to prove  that  R ' x  K-ZeY , ,+ t .  

(c) Recall  that  z=U;:'=,({pj}xGj)uF, where r={(qi,  ki),i = 
1 , . . . ,  r} and pj, qir k~eK for all i,j. Clearly there exists a set G c K such 
tha t  GcGj ( j = l , . . . , m ) ,  G n { k j , . . . , k r } = ~ ,  and K - G  is finite and 
satisfies IK~-GI=IKz-GI+I, i.e., I(Gj-G)nKd=I(Gj-G)nK2I for  all 
j =  1 , . . .  ,m .  We have 

R' • K -  Z=(R'  • G) u [R' • (K-G)] 

= I  ({pl . . . . .  pm}XG)u O({P:}• 

= [ ( R ' -  {PI . . . . .  p,,,} ) x G]  w [F, - ( r l  u V ) ]  

where the union is disjoint, (R ' - - {p l , . . .  ,pro})x Ge.s by (1), and 
F, = R '  x ( K -  G) ,  F2 = U;."=, [{pj} x (Gj- G)] are finite sets. I t  is sufficient 
to prove  Fl - (F2 u F )  e 5r + 1. 

We have 

as 

as 

a n d  

IF1 n Q,+ il = IFl n Q ' +  11 

IR'  n Q,I = IR'  n Q't ,  

IF2n  Q,+1I=IFz  n Q ' + I I  

](Gj- G) c~ KI] = ](Gj- G) n K2[ 

IFnQ,,+11=IFnQ'+II 

by (1). Hence  

I[F1 - (F2 u F) ]  c~ Q,+,  I = I[Fi - (F2 u F) ]  n Q ' + I  

and  F1 - (F2 w F )  ~s 
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III. Denote X = 1]~ 1 K, s c exp X, 

n = l  i = n + l  

By the definition of s we have A x KeL~a,+ ~ for every A e ~ , ,  hence {A x 
1]~=,+1 K, A e ~ , }  is an increasing sequence of concrete logics. Therefore 
also (X, ~ )  is a concrete logic. 

IV. If A, Be  he,,  then there exist sets M~, N~ e he,+ 1 (a < c0j) such that 
M~ w N~ = ( A n  B) x K for every a < o91 and M~ c~ Mt~ = ~ (a r 

Proof (a) The statement is true if there exists an Le.~a, such that 
L c A n B and ( A n  B) - L is finite. Indeed, we can take 

and 

M~=[(A n B ) - L ]  x {x~, x '}  

N ~ = ( L x K ) w [ ( ( A n B ) - L ) x ( K - { x , ~ } ) ]  (a < co,) 

where KI = {x~, a <col} and K2 = {x ' ,  a <col}. Clearly M~ and N~ satisfy 
all the conditions required. 

(b) In general we prove the statement by induction on n. For  n = 1 the 
statement follows from (a). Let A, Be~CP,+I. Then A and B can be expressed 

. . . .  k 1 
as disjoint umons A = Ui=l Ai, B= Uj=~ B2 of the form (1). It is sufficient 
to prove the statement for all the pairs A;, Bj [where these sets are of the 
form R x K, {p} x G, or F; see (1)]. Indeed, suppose we have found the sets 
M~ ], N'J satisfying the conditions of  the statements for the pairs Ai, B]. 
Then M~ = U~j M~ j, N~ = Ui j  N~ j satisfy the conditions for the pair A, B. 

We prove the statement for the sets A, B of  the form R x K, {p} x G, F. 
I f  either of sets A, B is finite, we can apply (a). 

If  A = R x K, B= {p} x G, then either A n B= ~J (if peR) or B o A  (if 
peR). In both cases A c ~ B e ~ , + l  and we can apply (a). 

Let A = {p} x G, B = {p'} x G'. If pep' ,  then A n B = ~ .  I f p = p  ', then 
we can find G " c G n G '  such that {p}xG"e~C~,+l and A n B -  
({p} x G") = {p} x [(G n G') - G"] is finite. 

It remains the case that A = R x K, B = R'  x K with R, R'  e 5s In this 
case the statement follows from the induction assumption. 

V. If  A, Beh~, then there exist sets M~, N ~ e ~  ( a<co  0 such that 
M,~w N~=A n B  (a <col) and M , ~ n M ~ = ~  (a r 

This follows from the definition of  s and from IV. 

VI. Every state on (X, ~ )  is Jauch-Piron. 
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Proof Let s : A e ~ [ 0 ,  1] be a state. Let A, B e ~ ,  s(A)=s(B)=l .  Find 
the sets M~, N~ (a <COl) satisfying the properties of V. As the sets M~ are 
disjoint, s(M,)r  only for a countable set of indices a. Thus s(Ml3)=0 
for some /3. Then s(A-M/s)  = 1 and ( A - M  a)c~ ( B - N p ) = ~ ,  so that 
s(B-Nts)=O and s(Nt3) = 1, where N ~ ,  NtscA c~B. 

v i i .  To prove that (AT, 5 o) is not a Boolean algebra, we shall use the 
following notations: 

For  M c X , ,  n >  1, a n d p e X , _ l  denote Mp = {k~K, (p, k ) e M }  (for n =  
l we consider formally X0 as a one-point set). For  M c X ,  and 1 <k<n 
define q,,k(M) inductively by q . . . .  I (M)={pEX, -1 ,  Mp is infinite} and 
q.,k(M) =q.-1.k(q.,.-~(m)) for 1 <_k <_n- 1. 

We say that a set M c X . ,  n >  1, is admissible if: (1) either Mp or K - M  e 
is finite for e v e r y p e X . - l ,  (2) { p e X . - l ,  (2~r is a finite set. 

Let M c X .  (n> 1) be an admissible set and let pEX._1. We define 

. [[({P} x Mp) c~ Q.+ , I -  I,({p} x M?) c~ Q'+ 11 
f u (p )=  ~l( {p} x ( K -  M?)) c~ Q,+,] 

1. - I ({p}  x (K-Mp))  c~ Q,+,I 

if Mp is finite 

if ] K -  Mpl < co 

We define further 

r ( M ) =  Z fM(p) 
p~X,,-1 

(note that this sum is finite). Clearly fM~M,(p)=fu(p)+fM,(p) and 
r(M w M' )=r (M)+r(M' )  for all disjoint admissible sets M, M'  ~ X ,  and 
for all peX,_  1. 

VIII. Let Me~q~. (n>  1). Then (a) M is an admissible set, (b) q,,.k(M) 
is an admissible set for every k, 1 <_k<n, and (c) 

r(M)+ ~ r(q.,k(M))=O 
k = l  

We prove the statement by induction on n. For  n = 1 the statement is 
clear [every M e  ~ is admissible and r(M)= 0]. Suppose that the statements 
(a)-(c) are true for n and let Me2 ' .+~  be of  the form (1). Clearly M is 
admissible. Further, qn + 1,.(M) = R u {pl . . . . .  pm} and 

q,+,,k(M) = q,,k(R u {Pl, . . . , P,,} ) = q,,g(R) 

for k = 1 . . . . .  n -  1. By the induction assumption the sets R and qmk(R) (k = 
1 , . . . ,  n - l )  are admissible and {p~ . . . . .  p,,} is a finite set, so that also 
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R u {Pl, �9 �9 �9 P,,,} is admissible. This proves statements (a) and (b) for n + 1. 
As the function r is additive, we have 

r(M)+ ~ r(q.+l,k(M)) 
k = l  

[ ] = r(R x K) + Z r(q,,+l.k(R • K))  
k = l  

+ ~. r({pj} x Gj)+ r(q.+,,k({pj} x Gj)) 
j = l  k = l  

We have r(RxK)=O, q.+1,.(RxK)=R, q.+l,k(RxK)=q.,k(R) for k =  
1 . . . . .  n - 1 .  As res we have by the induction assumption 
~=lr(q.+l,k(RXK))=O. Further, r ( f ) = 0  by (1) and q.+l,k(F)=;?5 
for k = l  . . . . .  n. As q.+l,-({Ps} xGj )={p j}  and q.+l,k({pj} x G j . ) = ~  for 
k = l  . . . .  , n - l ,  it is sufficient to prove r({pj}xGj)+r({pj})=O for 
j = l  . . . .  ,m. 

IfpjeQ., we have r({ps } ) = 1 and 

r({PA • Gj) • G,(pj) 

= [[{pj} x ( K -  Gj)] n Q ' + I [ -  [[{pff} • (K-Gj)] rn Q,,+,[ 

= I ( K -  G s) c~K2I-I(K-G s) c~K,I 

= I/s - Gj[ - [K~ - Gj[ = - 1 

by (1). IfpseQ', we have analogously r({pj} ) = - 1  and r({pj} x Gj)= 1. In 
both cases r({pj})+r({ps } x Gj)=0 ,  so that statement (c) holds for all 
Me&a.+l .  

I X .  ( X ,  5 r  is  n o t  a Boolean algebra. 
Clearly 

A =  {xl ,x]} + f i  KEY'  and B={x,,x~} x f i  KeSe 
i = 2  i = 2  

where X 1 e K l ,  x~, x2eK2 ,  and x[ Cx~. We prove that 

A c~B={x,} x fi  K 
i = 2  
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n does not belong to ~ .  Suppose on the contrary that {x~} x I]i=2 K~5~ for 
some n. Then n > 2, 

r ( q " ' k ( { x l } x f i K ) ) = r ( { x l } •  ~=2 

for k = 2, 3 . . . . .  n -  1 and 

So condition 3 of VIII is not satisfied and A c~ B~SC 

Remark. The logic (X, ~ )  constructed in Theorem 1 has cardinality 
co~. By Miiller et al. (1993), Theorem 4.1, it is not possible to construct a 
countable example with these properties. 

In the present construction we used essentially the fact that the intersec- 
tion of  any two elements of  the logic is equal to the union of two other 
elements. By Mfiller et al. (1993), a concrete o--logic (!.e., a logic closed 
under taking countable disjoint unions) with this property is already a 
Boolean algebra. We conjecture that a concrete o--logic such that every 
(finite additive) state on it is Jauch-Piron is necessarily a Boolean algebra 
(however, it may seem unnatural to consider o--logics and finite-additive 
states). The situation is much better in the class of  concrete complete logics 
(i.e., concrete logics closed under taking arbitrary disjoint unions). The fol- 
lowing theorem gives several equivalent conditions for complete concrete 
logics with all states Jauch-Piron. The results confirm also the connection 
between the Jauch-Piron property of  states and the covering properties 
studied in Mfiller et al. (1993). 

Theorem 2. Let (AT, Lf)  be a complete concrete logic. Then the follow- 
ing statements are equivalent: 

1. (X, L~') is a complete Boolean algebra. 
2. Every state on (X, L,e) is Jauch-Piron. 
3. Every two-valued state on (X, ~ )  carried by a point of X is Jauch- 

Piron. 
4. U { Me~c~', M c A  n B } = A  c~B for every A, B e A  a. 

[I.e., (X, =ocP) is of class Ccardz~ in the notation of  Mfiller et al. (i993).] 
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Proof The implications 1 ~ 2 ~  3 are clear. 
3 ~ 4  (Miiller et al., 1993): Let A, B ~  and 

U {MeSY, M c A  riB} #A c~B 

Take xe(A n B)-  U {M~SF, M c A n  B} and let s be the two-valued state 
carried by x. Then s is not Jauch-Piron. 

4 ~ 1 : We shall use the following convention : 
Let a be an ordinal number and let J / /=  {Ms}p<~ be a system of sets. 

We say that J4' is increasing if Mt3, cMs2 for /31</32. We say that J / / i s  
decreasing if Ms, =Ms2 for fll < f12. 

The proof will be carried out in several steps: 

(a) Let a be an ordinal number and let M s (fl < a) be an increasing 
system of sets of .ow. Then Us<~ Ms eA'~. 

Proof For fl<_a, denote K s = U r < s M y .  We prove that K s e ~  for 
every fl _< a. Suppose on the contrary that KSor162 and let/30 be the smallest 
ordinal with this property. For every xeKso= Ur<s0 Mr there exists the 
smallest ordinal Yx such that xeMrx. Thus, KS0 can be written as a disjoint 
union Kso=Ur<so[Mr-Ky]. By the assumption, K y E ~  for all Y</3o, 
hence K s 0 ~ ,  a contradiction. 

(b) Let a be an ordinal number and let M s (/3 < a) be a decreasing 
system of sets of A a. Then (~s<~ MseAC- 

Proof We have Ns<a Ms = X -  Us<~ ( x -  Ms), where X -  M s is an 
increasing system. Thus (~s<~ MSE~.  

(c) Let a be an ordinal number and let M s ~  ( /3<a) .  Let 
xe  Ns<~ Ms.  Then there exists K E ~  such that xsK and K c  Ns<~ Ms. 

Proof By transfinite induction we define a decreasing system Ks eoW 
(/3 < a) of sets containing x. Set K0 = M0. 

If/3 is a nonlimit ordinM, fl = y + 1, then K y s ~ ,  M r s , ,  x~Ky n M r. 
Therefore K r n Mr= U {LsSf ,  LcKy n Mr} and there exists a set K s e ~ ,  
KscKrn My, xeKs. 

If/3 is a limit ordinal, define K s = ~Y<s Ky. 
Clearly K s ( /3<a)  is a decreasing system of sets of 5f, xeK s for all 

/3 < a, and K s c M r for all y </3. Hence K= ~s <~ Ks satisfies the required 
conditions. 

Notation. Let J l ,  ~ c ~ be two systems of subsets of X. We shall write 
~ / g  if U J r =  U ~ and K c M  for every Ke~ff and M e ~ g  such that 
K n M # ~ .  
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It is easy to see that the relation -< is transitive. 

(d) Let s / /=  {Mi, ieI} cs be a system of subsets of X. Then there 
exists a system offcSr  such that Off<JL 

Proof Let x e U  s/t'. Denote I, = {ieI, xeMi}, 12 = {i~I, x~.Mi}. Apply 
the previous statement to the system {Mi, ieI~} u {X -Mi ,  ieI2}. There 
exists a set K~e~, xeKx, Kxc(']i~,, Min (']~2(X-M~). It is easy to see 
that the system off= { K e ~ ,  K=K~ for some x e U  J[} has the required 
property. 

(e) Let A, B e ~ .  Then A n B e ~ .  

Proof Set o f f 0 = { M e ~ ,  M c A  riB}. By the assumption, U off0 = 
A c~ B. For every positive integer n we define a system off, c ~ such that 
U o f f ,=A n B off,-<off,-1 �9 Let x~A n B. For every n we find a set K,,eoff, 
with x~K,. This means that K,+1 ~ K ,  for every n. Set K~= ('],~0 K, eL.e. 
The set Kx is independent of the choice of the sequence K,. Indeed, suppose 
K'eoff,,  xeK" (n=0,  1 . . . .  ). As K, nK'+1 # ~ ,  we have K:,+lcK, and 

OO I ~ 
N,=0 K , c  ~ = 0  K,. The opposite inclusion can be obtained analogously. 

Suppose K~ n K y # ~  for two elements x, yeA n B, x#y .  Similarly as 
above we get K~=Ky, so that off= { K ~ ,  K---K~ for some xeA riB} is a 
disjoint system. Hence A n B = U off e ~ .  

(f) (x ,  ~ )  is a complete Boolean algebra. 

Proof Let a be an ordinal number and let MaESr ( f l < a ) .  For f l<a 
denote Ka = ~ < a  Mr. Clearly K a (/3 < a) is a decreasing system of sets. We 
prove by transfinite induction that K a e ~ for every 13 < a. For/3 = 0 we have 
Ko=XELP. For nonlimit ordinals we have Kp+l =Kp n Ma~oW by (e). If/3 
is a limit ordinal we have Ka= 0 r < a  K T e ~  by (b). This finishes the proof, 
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