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Jauch—Piron States on Concrete Quantum Logics

V. Miiller!

Received July 21, 1992

We exhibit an example of a concrete (=set-representable) quantum logic which
is not a Boolean algebra such that every state on it is Jauch-Piron. This gives a
negative answer to a problem raised by Navara and Ptak. Further we show that
such an example does not exist in the class of complete (i.e., closed under arbitrary
disjoint unions) concrete logics.

A concrete logic is a pair <X, &) where X is a set and L cexp X
satisfies:

1. Jel.
2. X—Aec¥ whenever Ac¥.
3. AuBe¥ whenever A, Be ¥, AnB=(J.

Note that also A~ B=X—(Bu (X —A4))e ¥ for every 4, Be ¥, Bc A.
A state on a concrete logic <X, . is a mapping s: £ — [0, 1] such that:

1. s(4 v B)=s(A4)+s(B) whenever A, Be ¥, AnB=.
2. s(X)=1.

A state s is said to be carried by a point xe X if s{(4) =1 whenever xe 4,
Ae?, and s(A)=0 if x¢A. A state s is called Jauch-Piron if, for every
A, Be & with s(4) =s(B)=1, there exists a Ce.% such that Cc 4 n B and
s(C)=1.

The Jauch-Piron property of states has been considered as physically
natural in the axiomatization of quantum systems (Jauch, 1968 ; Jauch and
Piron, 1969; Piron, 1976) and further studied by a number of authors (see,
e.g., Amman, 1987; Bugajska and Bugajski, 1972; Bunce ef al., 1985; Ptak
and Pulmannova, 1991). Navara and Ptak (1989) (see also Miiller et al., 1993)
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raised the question of whether a concrete logic such that every state on it is
Jauch-Piron is necessarily a Boolean algebra. We give a negative answer to
this question.

Theorem 1. There exists a concrete logic (X, ¥ which is not a Boolean
algebra such that every state on (X, %) is Jauch-Piron.

Proof. Let Ky, K, be two disjoint sets of cardinality @,. Let K=K, U K,
and X,=K" (n=1,2,...). Further, let

0.={{ky, . . ., kayeX,, kic K, for an even number of indices i}

and 0,=X,—Q,. For 1<m<n denote by 7,,,:X,— X,. the projection
onto the first m coordinates, i.e., 7,,.(<ki, ..., k.p)=<ky, ..., k,y for all
<k[, ey k,,>EXn.

We define by induction on # a system &, <cexp X, (n=1,2,...). For
n=1 and McX,=K let Me¥, if and only if either M is finite and
IM N K\|=|M ~ K] or X, — M is finite and (X1 — M) n Kij=[{(X;1— M) n K3}

Suppose Z,cexp X, is already defined. We define %, as the family
of all sets M =X, which can be expressed as a disjoint union of the form

m

M=RxKu U ({p}xG)UF )

where Re ¥, pieX, (j=1,...,m), m<oo, G;=K, K— G;is a finite set and
IKi—G|=|K,— G|+ 1forj=1,...,m, and Fc X, is a finite set satisfying
[F Qnir|=|F Qrsil

Notice that if Me %, 4, is infinite (i.e., if either R# ¢ or m#0), then
Mn @, and M~ Q,, are infinite as well.

LITM Me%,and M M'= 4, then Mu M'e%,. This is clear for
n=1. For n>2 it follows easily from (1) by induction on n.

II. f Me %, then X,— Me%,, ie., {X,, %, is a concrete logic.

Proof. By induction on n: Let Me.%,+: be of the form (1). Denote
Z= {p}*xG)UF, e, M=RxKuZ
j=1

Clearly 7,.1.(Z) is a finite set and 7,+1.(Z) " R=¢J. We prove that
X,r1—Me ¥, in several steps:

(a) There exists a finite set R'e ¥, such that RAnR'=¢ and R'>
Tnt1.(Z). This is clear if X,,— R is finite: we can take R'=X,— Re ¥, by
the induction assumption. If X,,— R is infinite, then also (X,—R) n 0, and
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(X.— R) n O, are infinite and it is easy to see that there exists a finite set
R'<X,—Rsuchthat |[R'n Q,|=|R"nQ,land R'>7,+1.(Z). Then R'e &,
by (1).

(b) Let R’ be the set constructed in (a). Then

Xp1—M=[(X,—(RURY)XK]U(R'xK—Z)

where [X,—(RU R")] X Ke.#,+, and the above union is disjoint. Thus it
suffices to prove that R' X K—Ze &, .
(c) Recall that Z={J_, ({p}xG)UF, where F={{g;,kp,i=
,r}and p;, ¢ R, kieK for all i, j. Clearly there exists a set G < K such
that Gch (j=1,...,m), Gtk ..., k}=¢, and K—G is finite and
satisfies |K;—G|=]|K,—G|+1, ie., [(Gi—G)n Ki|={(G;—G) ~ K| for all
j=1,...,m. We have

R'XK—Z=(R'XG)U[R' X (K—G)]
f[({pn ces Py X G U J_Ql ({pi} x(G—G))v F]

=[(R/_{Pls---3?:;7})XG]U[FI-(FIUF)}

where the union is disjoint, (R'—{pi,...,pm})XGeZL,41 by (1), and
F =R x(K—G), F,= U, y [{p;} X (G;—G)] are finite sets. It is sufficient
to prove Fi—~(F, U0 F)eLyi-

We have

IFin Qusil=1Fi 0 Qhel

as
IR"N Qi=|R"" Qal,
Hon Quarl=1F20 Qnvi
as
I(G;—G) 0 Ki|={(G;— G) n Ky
and

IF O Qs =1F Qi
by (1). Hence
[Fi = (F2 )N Quai| = |[Fy = (F2 O F)] N Qi
and Fi— (FKUF)eXL -



436 Miiller

II. Denote X=[[7 K, Z<expJX,

0 o
Z=1) {A x 1 K,Aegn}
n=1 i=n+1
By the definition of %, we have A x Ke £, for every Ae %, hence {4 X
=+ K. AeZ,} is an increasing sequence of concrete logics. Therefore
also (X, &> is a concrete logic.

IV. If A, Be #Z,, then there exist sets M, , N,€.%,+; (a <®,) such that
M,UN,=(AnB)xK for every a <w; and M, n My= & (a #p).

Proof. (a) The statement is true if there exists an Le.#, such that
LcAn Band (4~ B)—L is finite. Indeed, we can take

Mo=[(4B)= L] X {x,, L}
and
Ne=(LxK)u[(AnB)—L)yx (K= {x.})] (a<a)

where K= {x,, <} and K,={x;, @ <w@,}. Clearly M, and N, satisfy
all the conditions required.

(b) In general we prove the statement by induction on n. For n=1 the
statement follows from (a). Let 4, Be #,,+;. Then 4 and B can be expressed
as disjoint unions 4 = Uf;, A;, B= U]’.=, B; of the form (1). It is sufficient
to prove the statement for all the pairs 4;, B; [where these sets are of the
form Rx K, {p} X G, or F; see (1)]. Indeed, suppose we have found the sets
MY, N% satisfying the conditions of the statements for the pairs 4;, B;.
Then M,=\J,; MY, N,=|.; N/ satisfy the conditions for the pair 4, B.

We prove the statement for the sets 4, B of the form Rx K, {p} X G, F.
If either of sets A, B is finite, we can apply (a).

If A=Rx K, B={p} X G, then either A " B=F (if p¢R) or B< 4 (if
peR). In both cases 4 n Be ¥, and we can apply (a).

Let A={p} X G, B={p'} xG'. If p#p’, then A " B=. If p=p', then
we can find G"=GN G such that {p}xG"e¥,+1 and 4nB—
({p} xG={p} x[(GNn G)—G"] is finite.

It remains the case that A=Rx K, B=R’'x K with R, R’e#,. In this
case the statement follows from the induction assumption.

V. If 4, Be ¥, then there exist sets M,, N,e¥ (a<w;) such that
My UN,=AnB(a<w;)and M, Mg= (a #p).
This follows from the definition of & and from IV.

VI. Every state on {X, %) is Jauch-Piron.



Jauch-Piron States on Concrete Quantum Logics 437

Proof. Let 5: ¥ — [0, 1] be a state. Let 4, Be ¥, s(4)=s(B)=1. Find
the sets M,, N, (a <) satisfying the properties of V. As the sets M, are
disjoint, s(M,)#0 only for a countable set of indices a. Thus s(Mp)=0
for some . Then s(A—Mpg)=1 and (4— M) (B—Nz)=J, so that
$(B—Ng)=0 and s(Ng)=1, where Nge &, Ngc AN B.

VII. To prove that (X, %) is not a Boolean algebra, we shall use the
following notations:

For M<X,,n=1,and peX,_ denote M,={keK, {p, kye M} (forn=
1 we consider formally X, as a one-point set). For McX, and 1 <k<n
define gnx(M) inductively by g,.-(M)={peX,_;, M, is infinite} and
Qn,k(]‘l) = qn—l,k(qn,n—l(M)) for 1 Skﬁl’l“‘ 1.

We say that a set M < X,,, n>1, is admissible if: (1) either M, or K— M,
is finite for every peX,_y, (2) {peX,.—\, F#M,#K} is a finite set.

Let M<X, (n>1) be an admissible set and let peX,_;. We define

I({P} X M) 0 Quistl = I({p} X M) " Q1| if M, is finite
fM(p): |({P} x (K_ Mp)) M Q:r+1]
=({p} X (K—M,)) " 0,41 if |K—M,| <

We define further

HM)= 3, fulp)

peXy—1

(note that this sum is finite). Clearly fiso A p)=fu(p)+/far(p) and
rMouM)Y=rM)+r(M') for all disjoint admissible sets M, M'< X, and
for all peX,_;.

VIII. Let Me.¥, (n>1). Then (a) M is an admissible set, (b) g, (M)
is an admissible set for every k, 1 <k<n, and (c)

n—

M)+ Y, r(guu(M))=0

k=1

We prove the statement by induction on n. For n=1 the statement is
clear [every M e ¥, is admissible and »(M ) =0]. Suppose that the statements
(a)-(c) are true for n and let Me %, be of the form (1). Clearly M is
admissible. Further, g,+1.(M)=RuU{p1,...,pn} and

qn+l,k(M)=qn,k(R U {Pl PRI ,Pm})Z‘In,k(R)

fork=1,..., n—1. By the induction assumption the sets R and ¢,.(R) (k=
1,...,n—1) are admissible and {p,,...,p,} is a finite set, so that also
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RU{pi,...,pn} is admissible. This proves statements (a) and (b) for n+ 1.
As the function r is additive, we have

L)+ T 1(gns12(M))

k=1

:[;-(RXK)+ i r'(qn+1,k(RxK))]

k=1

+ % I:r({pj} xG)+ i (s 1,:({ P} % Gj)):|
k=1

Jj=1

+[r(F)+ i r(qn+1,k(F))]

k=1

We have {(RXK)=0, ¢,+1.{RXK)=R, gus1.(RXK)=g, . (R) for k=
I,...,n—1. As re%,, we have by the induction assumption
Yeet T(@nr1 (RX K))=0. Further, r(F)=0 by (1) and g,+1.(F)=¢
for k=1,...,n As g.v1.({p} X G)={p;} and g, 1.({p;} X G;))=¢ for
k=1,...,n—1, it is sufficient to prove r({p;} xG;)+r({p;})=0 for
j=1,...,m.
If p;e Q,, we have r({p;} )=1 and
r({pi} X Gi) = fipy < 6(07)
=U{pit X (K= Gl 0 Qrvdl = [{p} X (K= G)I N Qs
=|(K=Gj) n K| = (K= Gj) n Ki
=K~ G|~ K= Gj|=~1
by (1). If p,e @, we have analogously r({p;})=—1 and ({p;} X G;)=1. In

both cases r({p;})+r({p;} X G;)=0, so that statement (c) holds for all
Me og,H.] .

IX. (X, &> is not a Boolean algebra.
Clearly

o0 o0
A={x,xi}+ [ Ke¥ and B={x;,x}x[] Ke¥
i=2 i=2
where x, €Ki, xi, x5€K5, and x| #x5. We prove that

AmB={x1}>< 1_[ K
i=2
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does not belong to £. Suppose on the contrary that {x;} x[[]_, Ke &, for
some #. Then n>2,

r({xl} x ,-Ijz K)ZO,

fork=2,3,...,n—1and

r<qn,1({x1} X EIZ K))=r({x1})= 1.

So condition 3 of VIII is not satisfied and 4 N B¢.Z.

Remark. The logic (X, & constructed in Theorem 1 has cardinality
wy. By Miiller et al. (1993), Theorem 4.1, it is not possible to construct a
countable example with these properties.

In the present construction we used essentially the fact that the intersec-
tion of any two elements of the logic is equal to the union of two other
elements. By Miiller er al. (1993), a concrete o-logic (i.e., a logic closed
under taking countable disjoint unions) with this property is already a
Boolean algebra. We conjecture that a concrete o-logic such that every
(finite additive) state on it is Jauch-Piron is necessarily a Boolean algebra
(however, it may seem unnatural to consider o-logics and finite-additive
states). The situation is much better in the class of concrete complete logics
(i.e., concrete logics closed under taking arbitrary disjoint unions). The fol-
lowing theorem gives several equivalent conditions for complete concrete
logics with all states Jauch-Piron. The results confirm also the connection
between the Jauch-Piron property of states and the covering properties
studied in Miiller et al. (1993).

Theorem 2. Let (X, &> be a complete concrete logic. Then the follow-
ing statements are equivalent:

1. (X, &) is a complete Boolean algebra.

2. Every state on {X, ¢ is Jauch-Piron.

3. Every two-valued state on {X, .#) carried by a point of X is Jauch-
Piron.

4. J{Me¥%, McAn B =A4nBforevery 4, Be £.

[Le., <X, &> is of class Cc,rae in the notation of Miiller et al. (1993).]
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Proof. The implications 1=>2=>3 are clear.
3=-4 (Miiller et al., 1993): Let A, Be ¥ and

U{Me#,McAnB}#4nB

Take xe(4 n B)— {Me ¥, Mc A B} and let s be the two-valued state
carried by x. Then s is not Jauch-Piron.
4 = 1: We shall use the following convention:
Let a be an ordinal number and let .# = {Mpg}p-, be a system of sets.
We say that .# is increasing if Mg, < Mg, for B <p,. We say that .# is
decreasing if Mg, > My, for B, <p,.
" The proof will be carried out in several steps:

(a) Let @ be an ordinal number and let My (S <a) be an increasing
system of sets of . Then (Js<q Mpe 2.

Proof. For B<a, denote Kz=|J,; M,. We prove that Kze % for
every ff <a. Suppose on the contrary that Kz ¢.# and let B, be the smallest
ordinal with this property. For every xeKp,=|J,<p, M, there exists the
smallest ordinal y, such that xe M, . Thus, Kz, can be written as a disjoint
union Kp,= U, <p, [M,—K,]. By the assumption, K,e.% for all y<p,,
hence Kg €%, a contradiction.

(b) Let a be an ordinal number and let M, (f<a) be a decreasing
system of sets of £. Then ﬂp<a Mge Z.

Proof. We have ﬂ,ka Mg=X—Jp<a (X— M), where X — M is an
increasing system. Thus ﬂﬂq MgeZ.

(¢) Let a be an ordinal number and let Mze¥ (B<a). Let
x€()\p<a Mp. Then there exists Ke.# such that xeK and Kc Np<a Mp.

Proof. By transfinite induction we define a decreasing system Kze.¥
(B < a) of sets containing x. Set Ko=M,.

If B is a nonlimit ordinal, f=y+1, then K, e ¥, M, e ¥, xeK, " M,.
Therefore K, n M,=\) {Le %, Lc K, n M,} and there exists a set Kze %,
KscK,nM,, xeKp.

If B is a limit ordinal, define K;={),-5 K, .

Clearly K; (f<a) is a decreasing system of sets of &, xeKj for all
B<a,and Kz M, for all y<p. Hence K= ﬂﬁq K satisfies the required
conditions.

Notation. Let M, A = % be two systems of subsets of X. We shall write
H <M if\J# =) 4 and KcM for every Ke#" and Me.# such that
KnM+#J.
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It is easy to see that the relation < is transitive.

(d) Let #={M,, icl}<.¥ be a system of subsets of X. Then there
exists a system % <.% such that 4" <. 4.

Proof. Let xe|) #. Denote I, ={iel, xe M}, L={iel, x¢ M;}. Apply
the previous statement to the system {M;,iel,} U {X—M,, iel,}. There
exists a set K.€.%, xek,, K, ﬂ,-el‘ M;n ﬂie,z (X—M,). It is easy to see
that the system # ={Ke¥, K=K, for some xelJ M} has the required
property.

(e) Let A, Be#. Then An BeZ.

Proof. Set A o={Me¥, Mc An B}. By the assumption, |J # o=
A n B. For every positive integer » we define a system 4, <% such that
U A =AnB A, <A ;. Let xe4 n B. For every n we find a set K, e,
with xeK,. This means that K, ., <K, for every n. Set K, = ﬂ:ozoK,,e,?.
The set K, is independent of the choice of the sequence K,,. Indeed, suppose
KeA,, xeK, (n=0,1,...). As K,nK,+1#, we have K, .1 <K, and

o o Kic[ ), K,. The opposite inclusion can be obtained analogously.

Suppose K, n K, # I for two elements x, ye 4 n B, x#y. Similarly as
above we get K,=K,, so that 4 ={Ke%, K=K, for some xeAn B} is a
disjoint system. Hence A n B= U Ae.

) X, &> is a complete Boolean algebra.

Proof. Let a be an ordinal number and let Mze ¥ (f<a). For f<c
denote K= ﬂy< s M, . Clearly K (B < a) is a decreasing system of sets. We
prove by transfinite induction that Kze & for every f <ea. For f=0 we have
Koy=Xe#. For nonlimit ordinals we have Kz, ,=Kzn MgeZ by (e). If B
is a limit ordinal we bave K= ﬂy< s K, €% by (b). This finishes the proof,
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